
TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Network Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 1)

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when segment loss is detected. Fast
Retransmit and Fast Recovery have been designed to speed up the recovery of the connection, without compromising its
congestion avoidance characteristics.

Fast Retransmit and Recovery detect a segment loss via duplicate acknowledgements. When a segment is lost, TCP at the
receiver will keep sending ack segments indicating the next expected sequence number. This sequence number would
correspond to the lost segment. If only one segment is lost, TCP will keep generating acks for the following segments. This will
result in the transmitter getting duplicate acks (i.e. acks with the same ack sequence number)

Server Socket create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open.
In this mode, the socket does not attempt to
establish a TCP connection. The socket listens
for TCP connection request from clients

Listen Socket transitions to the Listen state

Server socket initialization

Server awaits client socket connections.

Client Socketcreate Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization

Socket initialization

Active_Open Application wishes to communicate with a
destination server using a TCP connection. The
application opens a socket for the connection in
active mode. In this mode, a TCP connection
will be attempted with the server.
Typically, the client will use a well known port
number to communicate with the remote
Server. For example, HTTP uses port 80.

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to
request a TCP connection. The sequence
number field is set to 0. Since the SYN bit is
set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

Client initiated three way handshake to establish a TCP
connection

TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 2)

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the
TCP header. Server sends its initial sequence
number as 100. Server also sets its window to
65535 bytes. i.e. Server has buffer space for
65535 bytes of data. Also note that the ack
sequence numer is set to 1. This signifies that
the server expects a next byte sequence
number of 1

SYN Received Now the server transitions to the SYN Received
state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment,
thus completing the three way handshake. The
receive window is set to 5000. Ack sequence
number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP
connection has been established

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established
state

TCP Connection begins with slow start. The congestion window grows from an initial 512 bytes to 70000 bytes

cwnd = 70000 Congestion window has reached 70000 bytes

Data
size = 4096

Client App transmits 4Kbytes of data

Segment data into 8 TCP
segments

TCP segments data to 8 TCP segments (each
segment is 512 bytes)

TCP Segment
seq_num = 100000

TCP segment (start sequence number =
100000) is transmitted

TCP Segment
seq_num = 100512

TCP segment (start sequence number =
100512) is transmitted

TCP Segment
seq_num = 101024

TCP segment (start sequence number =
101024) is transmitted

Loss of a TCP segment

TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 3)

TCP Segment
seq_num = 101536

TCP segment (start sequence number =
101536) is transmitted

TCP Segment
seq_num = 102048

TCP segment (start sequence number =
102048) is transmitted

TCP Segment
seq_num = 102560

TCP segment (start sequence number =
102560) is transmitted

TCP Segment
seq_num = 103072

TCP segment (start sequence number =
103072) is transmitted

TCP Segment
seq_num = 103584

TCP segment (start sequence number =
103584) is transmitted

TCP Segment
seq_num = 100000

TCP segment (start sequence number =
100000) is delivered to the receiver

Data
size = 512

TCP passes 512 bytes of data to the higher
layer

TCP Segment
seq_num = 100512

TCP segment (start sequence number =
100512) is lost due to congestion in the
network.

TCP Segment
seq_num = 101024

TCP Segment with start sequence number
101024 is received. TCP realizes that a
segment has been missed. TCP buffers the out
of sequence segment as TCP cannot deliver
out of sequence data to the application.

ACK
ack_num = 100512

TCP sends an acknowledgement to the Sender
with the next expected sequence number set to
100512.

TCP Segment
seq_num = 101536

TCP receives the next segment. This and the
following out of sequence segments will be
buffered by TCP.

ACK
ack_num = 100512

TCP sends another acknowledgement with the
next expected sequence number still set to
100512. This is a duplicate acknowledgement

TCP Segment
seq_num = 102048

ACK
ack_num = 100512

TCP keeps acknowledging the received
segments with the next expected sequence
number as 100512

TCP Segment
seq_num = 102560

ACK
ack_num = 100512

TCP Segment
seq_num = 103072

ACK
ack_num = 100512

TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 4)

TCP Segment
seq_num = 103584

ACK
ack_num = 100512

Fast Retransmit: TCP receives duplicate
acks and it decides to retransmit the
segment, without waiting for the segment
timer to expire. This speeds up recovery of
the lost segment

ACK
ack_num = 100512

Client receives acknowledgement to the
segment with starting sequence number
100512

ACK
ack_num = 100512

First duplicate ack is received. TCP does not
know if this ack has been duplicated due to out
of sequence delivery of segments or the
duplicate ack is caused by lost segment.

Fast Retransmit At this point TCP moves to the fast retransmit
state. TCP will look for duplicate acks to decide
if a segment needs to be retransmitted
Note: TCP segments sent by the sender can be
delivered out of sequence to the receiver. This
can also result in duplicate acks. Thus TCP
waits for 3 duplicate acks before concluding
that a segment has been missed.

ACK
ack_num = 100512

Second duplicate ack is received

ACK
ack_num = 100512

Third duplicate ack is received. TCP now
assumes that duplicate acks point to a segment
that has been lost

ssthresh = cwnd/2 = 70000/2 =
35000

TCP uses the current congestion window to
mark the point of congestion. It saves the slow
start threshold as half of the current congestion
window size. If current cwnd is less than 4
segments, cwnd is set to 2 segments

TCP Segment
seq_num = 100512

TCP retransmits the missing segment i.e. the
segment corresponding to the ack sequence
number in the duplicate acks

Fast retransmit

Fast Recovery: Once the lost segment has been transmitted, TCP
tries to maintain the current data flow by not going back to slow
start. TCP also adjusts the window for all segments that have been
buffered by the receiver.

Fast Recovery In "Fast Recovery" state, TCP's main objective
is to maintain the current data stream data flow.

cwnd = ssthresh + 3 segments =
35000 + 3*512 = 36536

Since TCP started taking action on the third
duplicate ack, it sets the congestion window to
ssthresh + 3 segment. This halfs the TCP
window size and compensates for the TCP
segments that have already been buffered by
the receiver.

Fast Recovery

TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 5)

ACK
ack_num = 100512

Another duplicate ack is received. This means
that the receiver has buffered one more
segment

cwnd = cwnd + 1 segment =
37048

TCP again inflates the congestion window to
compensate for the delivered segment

ACK
ack_num = 100512

Yet another ack is received, this will further
inflate the congestion window

cwnd = cwnd + 1 segment =
37560

TCP Segment
seq_num = 100512

Finally, the retransmitted segment is delivered
to the server

Data
size = 3584

Now TCP can pass the just received missing
segment and all the buffered segments to the
application layer

ACK
ack_num = 104096

Now TCP acknowledges all the segments that it
had buffered

ACK
ack_num = 104096

The cummulative TCP ack is delivered to the
client

Congestion Avoidance

Congestion Avoidance The connection has moved back to the
congestion avoidance state.

cwnd = ssthresh = 35000 TCP takes a congestion avoidance action and
sets the segment size back to the slow start
threshold. The TCP window will now increase
by a maximum of one segment per round trip

Back to congestion
avoidance

Close Client application wishes to release the TCP
connection

FIN Client sends a TCP segment with the FIN bit
set in the TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

FIN Server receives the FIN

ACK Server responds back with ACK to
acknowledge the FIN

Close Wait Server changes state to Close Wait. In this
state the server waits for the server application
to close the connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state,
the TCP connection from the client to server is
closed. Client now waits close of TCP

Client to server TCP connection release

Client closes TCP connection

TCP - Transmission Control Protocol (TCP Fast Retransmit and Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server Socket Server App

EventStudio System Designer 6

28-Jul-13 15:32 (Page 6)

connection from the server end

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the
connection

Last Ack Server changes state to Last Ack. In this state
the last acknowledgement from the client will be
received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where
the last ack has been lost and server resends
FIN

Time Wait Client waits in Time Wait state to handle a FIN
retry

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Close_Timer Close timer has expired. Thus the client end
connection can be closed too.

Closed

delete

Server to client TCP connection release

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Fast Retransmit and Recovery
	Socket initialization
	Server socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	Loss of a TCP segment
	Fast retransmit
	Fast Recovery
	Back to congestion avoidance
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

