
What's New in EventStudio 7

1 NEW USER INTERFACE BASED ON VISUAL

STUDIO CODE

1.1 Project wide search and replace

1.2 Quick fi le open with fuzzy search

1.3 Multi -cursor editing

Preview changes

Preview changes

Regular

expression

search

Ctrl+P and the type a few

characters of the file name.

Select multiple cursors with

Alt+Left Mouse Click.

EventStudio System Designer 7

Page 2

1.4 Folding

1.5 In-line error reporting

Hitting enter introduces a

newline after every cursor.

Click to fold.

Click to unfold.

Errors are

reported as you

save.

Errors are also reported

in the Problems window.

EventStudio System Designer 7

Page 3

1.6 Snippets

1.7 Tabs and split Editor

1.8 Built in Git support

Insert predefined FDL

snippets. You can define

your own snippets as well.

Tabs shown

in left pane.

Split editor

vertically or

horizontally.

EventStudio System Designer 7

Page 4

1.9 Compare files

1.10 Brace and comment end matching

Commit

comment.

Files need staging.

Git

commands

.

Compare:

- Any two files

- Git commits

- Compare proposed

search and replace

EventStudio System Designer 7

Page 5

1.11 Extensions

Extend your EventStudio experience with Visual Studio Code extensions. Here are a few extensions that

we have found useful.

Recommended syntax

coloring theme.

Spell check FDL models. Camel

case variables are spell

checked as individual words.

Opens PDF files within

Visual Studio code.

Switch between

braces.

EventStudio System Designer 7

Page 6

2 AUTO PREVIEW

3 JSON BASED PROJECT FILE

EventStudio auto

updates the sequence

diagram when a FDL file

is saved.

Scenario projects format has been

changed to JSON. Just edit the

project as a text file.

- Legacy projects can be

converted to JSON via the

command-line.

EventStudio System Designer 7

Page 7

4 IMPROVED SUPPORT FOR MULTIPLE

SCENARIOS

4.1 Preprocessor defines simplify multiple scenario definition

 /* Specify the scenarios to be included in the project

 A scenario is defined with:

 "modelPath" FDL file that defines the model.

 "scenarioName" A title that summarizes the scenario

 "defines" Preprocessor defines that select the

 flow specific to this scenario. */

 "scenarios": [

 {

 "modelPath": "model/sequence_diagram.FDL",

 "scenarioName": "Basic Tutorial"

 },

 {

 "modelPath": "model/sequence_diagram.FDL",

 "scenarioName": "Advanced Tutorial",

 "defines": ["ADVANCED"]

 }

],

4.2 Specify preprocessor defines for documents

 their respective type specifications.

 "defines" Specify the preprocessor defines that are specific

 for this document.

 For example, "POSTER" and "PRESENTATION" formats

 can be selected by adding them to the defines. */

 "documents": [

 {

 "documentName": "tier1"

 },

 {

 "documentName": "tier2",

 "interactionLevel": "component",

 "defines": ["POSTER"]

 }

]

Scenario is identified

by the preprocessor

symbol ADVANCED.

Document characteristics are

identified by the preprocessor

symbol POSTER.

EventStudio System Designer 7

Page 8

5 MULTI-LINE MESSAGE OPCODES
 "Multi Line Message" +

 "- Sub header 1" +

 "- Sub header 2" (par1, par2):"Las Vegas" -> Johannesburg

 % Represent compound messages with the multi-line message syntax.

6 CALLOUT COMMENTS

7 HEADER AND FOOTERS

Add the following define before any header files

to represent all remarks as callouts:

#define USE_CALLOUT_REMARKS 1

EventStudio System Designer 7

Page 9

8 IMPROVED COMMAND LINE SUPPORT

9 SYNTAX IMPROVEMENTS

9.1 Single line remarks

 "Self Message" : "Las Vegas" -> "Las Vegas"

 % Model messages to self.

 "Message with Bold Arrow" : "Los Angeles" => Jaipur

 % Use the => or <= to represent messages with bold arrows.

 "Bidirectional Interaction" : "Los Angeles" <-> Jaipur

 % Model bi-directional message interactions with <-> or <=>.

Single line remarks begin with

the % sign.

EventStudio System Designer 7

Page 10

9.2 Flexible syntax that permits scenario level customization

#define RELEASE_10 1

 chain {

 "Chain Message 1" (field1, field2): "Los Angeles" -> "San Francisco"

 "Chain Message 2"

 (attribute1=Value1,

#ifdef RELEASE_10

 attribute2=Value2_Rel10

#else

 attribute2=Value2

#endif

): "San Francisco" -> Jaipur

9.3 Insert pseudo code fragments in block remarks

 "Message Cascade" (param1, param2="Value"): "Los Angeles" ->

 "San Francisco" -> "Las Vegas" -> Jaipur

 % Represent a chain of message interactions.

 [_code] |=

int my_array[5] = {1, 2, 3, 4, 5};

// double the value of each element in my_array:

for (int& x : my_array) {

 x *= 2;

}

// similar but also using type inference for array elements

for (auto& x : my_array) {

 x *= 2;

}=|

FDL syntax has been enhanced to

allow blank lines in several

statements. This allows you to

define message parameters based

on scenario or document defines.

You can add pseudo code right into

the sequence diagram.

	1 New User Interface Based on Visual Studio Code
	1.1 Project wide search and replace
	1.2 Quick file open with fuzzy search
	1.3 Multi-cursor editing
	1.4 Folding
	1.5 In-line error reporting
	1.6 Snippets
	1.7 Tabs and split Editor
	1.8 Built in Git support
	1.9 Compare files
	1.10 Brace and comment end matching
	1.11 Extensions

	2 Auto Preview
	3 JSON Based Project File
	4 Improved Support for Multiple Scenarios
	4.1 Preprocessor defines simplify multiple scenario definition
	4.2 Specify preprocessor defines for documents

	5 Multi-Line Message Opcodes
	6 Callout Comments
	7 Header and Footers
	8 Improved Command Line Support
	9 Syntax Improvements
	9.1 Single line remarks
	9.2 Flexible syntax that permits scenario level customization
	9.3 Insert pseudo code fragments in block remarks

